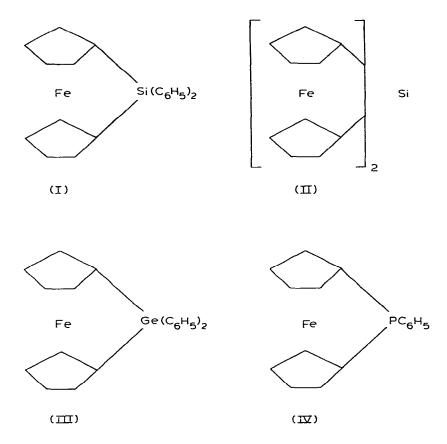
Journal of Organometallic Chemistry, 193 (1980) 345–357 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

# [1] FERROCENOPHANES. SYNTHESIS AND SPECTROSCOPIC PROPERTIES OF [1] FERROCENOPHANES WITH GROUP IV AND V ELEMENTS AS BRIDGE ATOMS

#### A.G. OSBORNE, R.H. WHITELEY

Department of Chemistry, University of Exeter, Exeter EX4 4QD (Great Britain) and R.E. MEADS Department of Physics, University of Exeter, Exeter EX4 4QD (Great Britain) (Received January 25th, 1980)

#### Summary


The [1] ferrocenophanes, 1,1'-ferrocenediyldiphenylsilane, bis(1,1'-ferrocenediyl)silane, 1,1'-ferrocenediyldiphenylgermane and 1,1'-ferrocenediylphenylphosphine have been prepared by the reaction of 1,1'-dilithioferrocenebis(N,N,N',N'-tetramethylethylenediamine) with dichlorodiphenylsilane, tetrachlorosilane, dichlorodiphenylgermane and P,P-dichlorophenylphosphine, respectively. Similar reactions with dichlorodimethyltin or dichlorodiphenyltin yielded only polymeric products. The Group IV [1] ferrocenophanes are red, air-stable, crystalline solids; the phosphorus compound is red-purple and is moderately air-sensitive. The spectroscopic properties of the compounds, which are consistent with ring-tilted structures, are reported and discussed.

#### Introduction

Although there are many known examples of [m] ferrocenophanes  $(m \ge 2)$ , the first examples of [1] ferrocenophanes have been reported only recently [1-3]. We now report the details of the preparation and spectroscopic properties of some [1] ferrocenophanes with Group IV and V elements as bridge atoms.

### **Results and discussion**

Reaction of the N,N,N',N'-tetramethylethylenediamine (TMED) adduct of 1,1'-dilithioferrocene with  $(C_6H_5)_2SiCl_2$ , SiCl<sub>4</sub>,  $(C_6H_5)_2GeCl_2$  and  $C_6H_5PCl_2$ 



yielded the [1] ferrocenophanes I, II, III and IV, respectively.

Compounds I, II and III are red, air-stable, crystalline solids; IV is a redpurple crystalline solid and is moderately air-sensitive. All the compounds are stable under an inert atmosphere in hydrocarbon solvents, but slowly decompose in solvents such as chloroform or ethanol. In all the preparations a considerable amount of polymeric material was also formed, as is to be expected with the free rotation of the cyclopentadienyl rings in the dilithio-intermediate. Indeed, in attempts to prepare a [1]ferrocenophane with Sn as the bridge atom, using  $(CH_3)_2SnCl_2$  or  $(C_6H_5)_2SnCl_2$ , only polymeric material was obtained. The polymeric product from the  $(CH_3)_2SnCl_2$  reaction was formulated as  $C_{10}H_9Fe [C_{10}H_8FeSnMe_2]_xH, x \approx 13$ , on the basis of analytical results, <sup>1</sup>H NMR spectrum and molar mass measurements. No attempt was made to characterise polymeric products from other reactions. Analytical data, reaction yields, colours and melting temperatures for the [1]ferrocenophanes are listed in Table 1. The [1]ferrocenophanes show molecular ions in their mass spectra with isotope patterns in good agreement with theory.

In ferrocene the cyclopentadienyl rings are planar and parallel with an interring separation [4] of 332 pm. Thus in [1]ferrocenophanes distortions from the ferrocene structure must occur with the cyclopentadienyl rings being inclined towards each other and towards the bridging atom. The structures of I, II and

| Com-  | Yield | m.p. (°C)              | Colour            | Analytical results (%) <sup>a</sup> |          |            |            |
|-------|-------|------------------------|-------------------|-------------------------------------|----------|------------|------------|
| pound | (%)   |                        |                   | С                                   | н        | Fe         | P          |
| I     | 32    | 196—197 <sup>b</sup>   | Red               | 72.1(72.1)                          | 5.9(5.0) |            |            |
| п     | 17    | >300 dec. <sup>b</sup> | Red               | 60.5(60.6)                          | 4.3(4.1) |            |            |
| III   | 19    | >250 dec. <sup>b</sup> | Red               | 64.2(64.3)                          | 4.4(4.4) |            |            |
| IV    | 51    | 104-147 dec.           | <b>Red-purple</b> | 65.5(65.8)                          | 4.6(4.5) | 19.4(19.1) | 10.3(10.6) |

REACTION YIELDS, PHYSICAL PROPERTIES AND ANALYTICAL DATA FOR [1]FERROCENO-PHANES

<sup>a</sup> Calculated figures in brackets. <sup>b</sup> Sealed under vacuum.

TABLE 1

III have been determined [5] and show that in addition to ring tilting there is considerable bond angle distortion at the substituted C(1) atoms of the cyclopentadienyl rings, see Fig. 1 and Table 2. The spectroscopic properties of the [1]ferrocenophanes reflect these structural distortions.

Details of the <sup>1</sup>H NMR spectra of the [1] ferrocenophanes and of some related non-bridged compounds for comparison purposes are shown in Table 3. The spectra of I, II and III all contain, as expected, a pair of unsymmetrical triplets corresponding to the H(2,5) and H(3,4) protons on the cyclopentadienyl rings (Fig. 2). The observed coupling is  $\approx 1.6$  Hz in all three cases, which is similar to that found for other substituted ferrocenes. The principal difference is that the separation between the triplets is usually larger for the [1]ferrocenophane than for non-bridged analogues. In the case of [2]ferrocenophanes bridged by carbon atoms it has been suggested [6] that this spectral feature is caused by ring tilting, the pairs of protons H(2,5) and H(3,4) being no longer equidistant from the iron atom, with the H(2,5) protons undergoing greater shielding from the iron atom and so giving rise to the upfield signal in the spectrum. This assignment was later confirmed by a study [7] of multibridged ferrocenes, but the explanation in terms of Fe-C(Cp) distances has been questioned [8]. It was further suggested, again in terms of Fe-C(Cp) distances, that the separation of the triplets is directly related to the angle of tilt of the rings. In the case of [1] ferrocenophanes this suggestion is unlikely to apply with any consistency since the ring-tilt distortion observed is the sum of two types of

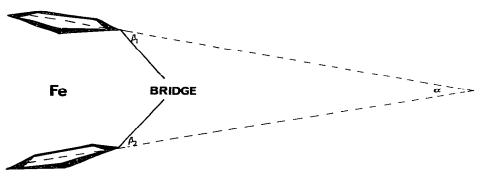



Fig. 1. Distortions in [1] ferrocenophanes.

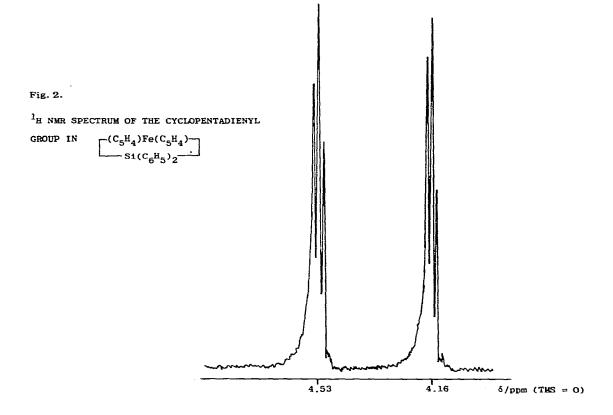

| Compound | α (°) | β <b>̃ (°)</b> |  |
|----------|-------|----------------|--|
| I        | 19.2  | 40             |  |
| III      | 16.6  | 38             |  |
| IV       | 26.7  | 32.5           |  |

TABLE 2

<sup>a</sup> For explanation of symbols see Fig. 1.  $\overline{\beta} = (\beta_1 + \beta_2)/2$ .

distortion; (a) ring tilt using the Fe atom as a fulcrum, and (b) ring tilt about the centroids of the cyclopentadienyl rings, and it is only type b, which was found to be almost constant in compounds I, III and IV, which will change Fe-C(Cp) distances. Furthermore, the C(1) bond angle distortion may also affect the magnitude of the separation.

In the absence of further data the assignment of the  $C_5H_4$  signals in the <sup>1</sup>H NMR spectra of I, II and III remains unresolved. In the spectrum of IV, however, the triplet at  $\delta = 4.18$  ppm is probably due to the H(3,4) protons and the signals at  $\delta = 4.29$  and 4.53 ppm, are presumably due to the H(2) and H(5)



| I H NMR DATA FOR SILICON, GERMANIUM AND PHOSPHORUS SUBSTITUTED FERROCENES $^{\mathfrak{a}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IUM AND PHOSPHORUS S    | ubstituted ferrocenes <sup>a</sup>                                      |                                      |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|--------------------------------------|---------------------------------------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | Chemical shift $^{\rm b}$ (multiplicity, relative intensity) $^{\rm c}$ | , relative intensity) <sup>c</sup>   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C5H5                    | C <sub>5</sub> H4                                                       | C <sub>6</sub> H5 (meta and<br>para) | C <sub>6</sub> H <sub>5</sub> (ortho) |
| [(C5H5)Fe(C5H4)]25(C6H5)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.86(s, 5)              | 4.28(t, 2), 4,39 (t, 2)                                                 | 7.25-7.50(m, 3)                      | 7.50—7.75(m, 2)                       |
| [C <sub>5</sub> H <sub>4</sub> Si (C <sub>6</sub> H <sub>5</sub> ) <sub>3]2</sub> Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 3.98(s, 4)                                                              | 7.05—7.65(m, 15)                     | n, 16)                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 4.16(t, 2), 4.53(t, 2)<br>[4.01(t, 1), 4.41(t, 1)] <sup>d</sup>         | 7.307.60(m, 3)                       | 7.90-8.10(m, 2)                       |
| [(C <sub>5</sub> H <sub>4</sub> ) Fe(C <sub>5</sub> H <sub>4</sub> )]2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 4.50(t, 1), 4.65(t, 1)<br>[4,47(s)] <sup>d</sup>                        |                                      |                                       |
| [(C <sub>5</sub> H <sub>5</sub> ) Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> Ge(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.84(s, 5)              | 4.22(t, 2), 4.34(t, 2)                                                  | 7.25–7.45(m, 3)                      | 7,457.70(m, 2)                        |
| C <sub>5</sub> H <sub>4</sub> ) Fe(C <sub>5</sub> H <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 4.24(t, 2), 4.48(t, 2)                                                  | 7,35—7.65(m, 3)                      | 7.758.05(m, 2)                        |
| Ge(C <sub>6</sub> H <sub>5</sub> )2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                                                         |                                      |                                       |
| [ (د <sub>6</sub> H <sub>5</sub> ) Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> PC <sub>6</sub> H <sub>5</sub> <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.88-4.15(s/m)          | and 4.15—4.32(m, 18)                                                    | 7,00—7.30(m, 3)                      | 7.55—7.85(m, 2)                       |
| [C <sub>5</sub> H4P(C <sub>6</sub> H5) <sub>2</sub> ] <sub>2</sub> Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 4.01(t, 1), 4.11(t, 1)                                                  | 6.85-7.20(m, 3)                      | 7.207.55(m, 2)                        |
| C <sub>5</sub> H <sub>4</sub> ) Fe (C <sub>5</sub> H <sub>4</sub> ) - d<br>- C <sub>5</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | 4.18(t, 4), 4.29(m, 2)<br>4.53(m, 2)                                    | 7.05–7.40(m, 3)                      | 7.507.80(m, 2)                        |
| $\left[ \frac{1}{1-1} \left[ $ |                         | 4.14(m, 2), 4.33(m, 4),<br>4.57(m, 2)                                   | 7.2—7.7(m, 3)                        | 7.7—8.2(m, 2)                         |
| <sup>a</sup> In CDCl <sub>3</sub> solution unless otherwise stated. <sup>b</sup> $\delta$ , ppm (TMS = 0 ppm). <sup>c</sup> s, singlet: d, doublet; t, unsymmetrical triplet; m, multiplet; s(m. singlet overlanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b b, ppm (TMS = 0 ppm), | s, singlet; d, doublet; t, unsymm                                       | tetrical triplet; m, multiplet       | s/m. singlet overlanning              |

A ADLE J

1

s, singlet; d, doublet; t, unsymmetrical triplet; m, multiplet; s/m, singlet overlapping יויזיקט ט CIMITY UNdid to 0101010 ñ  $multiplet, {}^{d} C_{6} D_{6}$  solution.

349

protons one of which ( $\delta = 4.53$  ppm) is preferentially deshielded by the neighbouring phenyl group.

Because of the asymmetry of IV it should, in principle, be possible to observe inversion at the phosphorus atom. <sup>1</sup>H NMR spectra in  $C_6D_6$  were recorded at temperatures up to 70°C, but there was no evidence for inversion.

IV will act as a conventional ligand towards transition metals, reacting with (COD)PtCl<sub>2</sub> to form *cis*-bis(1,1'-ferrocenediylphenylphosphine)dichloroplatinum(II), which crystallises from benzene as dark red needles with molecules of solvent in the crystals. In the <sup>31</sup>P NMR spectrum of IV, the signal at  $\delta = 11.2 \text{ ppm} (\delta(\text{H}_3\text{PO}_4) = 0 \text{ ppm})$  was observed to shift downfield to  $\delta = 17.8 \text{ ppm}, {}^{1}J({}^{195}\text{Pt}{}^{-31}\text{P}) = 3643 \text{ Hz}$ , in the spectrum of the platinum complex. The magnitude of the coupling confirms a *cis* geometry for the metal complex. The shift of 6.6 ppm downfield was rather smaller than was expected [9].

It is in the <sup>13</sup>C NMR spectra of the [1]ferrocenophanes that the most noticeable effect of the molecular distortion is observed. Data for the [1]ferrocenophanes and for some related non-bridged compounds are given in Table 4. The most striking feature is the high field value of the C(1) signal in the spectra of the [1]ferrocenophanes which occurs 35–60 ppm upfield from the resonance position for a C(1) atom of non-bridged analogues. This upfield shift is undoubtedly allied to the structural distortions at the C(1) atoms, but it does not seem possible to quantitatively relate the magnitude of the shift to any single structural parameter, and thus use the shift for structural diagnostic purposes. In IV the C(1) atoms are strongly coupled to the phosphorus atom,  $J({}^{31}P-{}^{13}C) = 55$  Hz; this compares with values of 7 Hz and 10 Hz in the nonbridged compounds  $(C_{10}H_9Fe)_2PC_6H_5$  and  $[C_5H_4P(C_6H_5)_2]_2Fe$ .

The results of some selective 'H decoupling experiments are shown in Table 5. The data show that for the silicon and germanium bridged [1]ferrocenophanes the upfield  $C_5H_4$  signal in each <sup>13</sup>C NMR spectrum is associated with the upfield  $C_5H_4$  triplet in the corresponding <sup>1</sup>H NMR spectrum, whereas the opposite is the case in the spectra of the non-bridged analogues.

The electronic spectrum of ferrocene has two main absorptions, viz 325 and 440 nm. For ferrocenophanes with tilted rings it has been found [10] that it is the 440 nm band which is the most affected by the ring tilt. This is also true for [1]ferrocenophanes; the 440 nm band undergoes a bathochromic shift and also increases in intensity (see Table 6 and Fig. 3). It can be seen from the data in Table 6 that, by itself, substitution of the rings has little effect on the 440 nm band, the predominant causes of the bathochromic shift are therefore the structural distortions. Again it is not possible to relate the magnitude of the shift just to the ring tilt, e.g. any one of these shifts is larger than that observed for any other ferrocenophane and yet the ring tilting observed for I and III is less than is observed in some [2]ferrocenophanes. The C(1) bond angle distortion must again be an important factor.

In the Mössbauer spectra the [1] ferrocenophanes also show some interesting results. By comparison with ferrocene and the non-bridged ferrocene derivatives studied, the [1] ferrocenophanes show a fall in quadrupole splitting from values  $\approx 2.3-2.4$  to  $\approx 1.95-2.0$  mm s<sup>-1</sup>. The effect of bridging on the isomer shift is very much less marked and hardly significant. These results are in contrast with those quoted by Hillman and Nagy for other bridged ferrocene

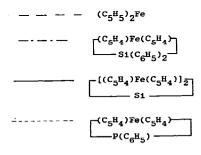
| 4  |
|----|
| E  |
| 1  |
| а. |
| <  |
| E4 |

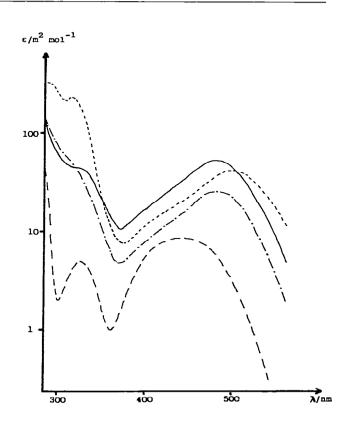
 $^{13}\mathrm{C}$  NMR data for silicon, germanium and phosphorus substituted ferrocenes  $^a$ 

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compound                                                                                                                                                                | Chemical shift <sup>b</sup> | ift <sup>b</sup>                  |                                         |                               |           |        |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|-----------------------------------------|-------------------------------|-----------|--------|-------|
| C(1)         C_3H_5         C(2.3.4.15)         C(1)         C(2.6) $6^{H_2}l_2$ 66.4         68.7         71.1, 74.8         137.6         135.4           66.4         -         72.8, 75.4         135.5         135.9         135.9 $66.4$ -         72.8, 75.4         135.5         135.9         134.3 $31.0$ -         76.7, 77.8         134.4         134.3 $30.5$ -         76.1, 77.9         134.4         134.3 $2^{0}h_5 l_2$ 69.6         68.5         70.4, 73.5         139.1         134.7 $2^{0}h_5 l_2$ 69.5         68.5         70.4, 73.6         139.1         134.7 $p_{15}^{1.5}$ 69.5         68.5         70.4, 73.6         135.9         134.0 $70.4$ 70.1(3), 70.8(3) $70.4$ , 75.9         135.9         134.0         1 $70.5$ 69.4 $70.4$ , 75.9         135.9         134.0         1 $70.5$ $70.4$ , 75.9         135.9         134.0         1         1 $70.6$ $70.4$ , 75.9         135.0         1         1         1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                         | C <sub>10</sub> H9Fe or     | C <sub>10</sub> H <sub>8</sub> Fe |                                         | C <sub>6</sub> H <sub>5</sub> |           |        |       |
| $a_{0}^{(4)}a_{2}^{(2)}$ 66.4 68.7 71.1, 74.8 137.6 136.4 66.4 - 72.8, 75.4 135.5 135.9 66.4 - 76.7, 77.8 134.4 134.3 31.0 - 76.7, 77.8 134.4 134.3 30.6 - 76.1, 77.9 134.4 134.3 30.6 - 76.1, 77.9 136.9 134.4 134.3 $a_{0}^{(4)}a_{2}^{(4)}a_{2}^{(4)}a_{2}^{(4)}a_{3}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4}^{(4)}a_{4$                                                                    |                                                                                                                                                                         | C(1)                        | C <sub>5</sub> H <sub>5</sub>     | C(2,3,4,5)                              | C(1)                          | C(2,6)    | C(3,5) | C(4)  |
| $\begin{bmatrix} 66.4 & - & 72.8, 75.4 & 135.5 & 135.9 \\ 31.0 & - & 76.7, 77.8 & 134.4 & 134.3 \\ 30.6 & - & 76.1, 77.9 & 139.1 & 134.7 \\ & & & & & & & & & & & & & \\ & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [(C <sub>5</sub> H <sub>5</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> Si (C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub>                                      | 66,4                        | 68.7                              | 71.1, 74.8                              | 137.6                         | 136.4     | 127.4  | 129.1 |
| $\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [C <sub>5</sub> H <sub>4</sub> Sı(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ] <sub>2</sub> Fe                                                                        | 66.4                        | ł                                 | 72.8, 75.4                              | 135,5                         | 135,9     | 127.7  | 129.4 |
| $\begin{bmatrix} z \\ -z^{-1} \end{bmatrix} = 30.6 - 75.1, 77.9 \\ = 6^{15}l_{2}^{2} = 69.6 = 68.5 - 70.4, 73.6 = 139.1 = 134.7 \\ = 28.5 - 76.7, 76.9 = 135.9 = 134.0 \\ = 28.5 - 76.7, 76.9 = 135.9 = 134.0 \\ = 76.7, 76.9 = 135.9 = 134.0 \\ = 76.7, 76.9 = 135.9 = 134.0 \\ = 77.6(10) - 72.6(4), 74.2(15) = 139.8(12) = 133.8(21) \\ = 77.6(10) - 77.2(34), 77.6(29) = 137.9(12) = 130.7(14) \\ = 77.6(15) - 77.6(12) = 137.9(12) = 130.7(14) \\ = 77.6(15) - 77.6(12) = 137.9(12) = 130.7(14) \\ = 77.6(15) - 77.6(12) = 137.9(12) = 130.7(14) \\ = 77.6(15) - 77.6(12) = 137.9(12) = 130.7(14) \\ = 77.6(15) - 77.6(15) = 137.9(12) = 130.7(14) \\ = 77.6(15) - 77.6(15) = 137.9(12) = 130.7(14) \\ = 77.6(15) - 77.6(15) = 137.9(12) = 130.7(14) \\ = 77.6(15) - 77.6(15) = 137.9(12) = 130.7(14) \\ = 77.6(15) - 77.6(15) = 137.9(12) = 130.7(14) \\ = 77.6(15) - 77.6(15) = 137.9(12) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 137.9(12) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 137.9(12) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 137.9(12) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 137.9(15) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 137.9(15) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 137.9(15) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 137.9(15) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 137.6(15) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(14) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) \\ = 77.6(15) + 77.6(15) = 130.7(15) = 130.7(15) = 130.7(15) = 130.7(15) = 130.7(15) = 130.7(15) = 130.7(15) = 130.7(15) = 130.7(15) = 130.7(15) = 130.7(15) $ | C <sub>5</sub> H <sub>4</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )                                                                                                       | 31,0                        | ł                                 | 76.7, 77.8                              | 134.4                         | 134.3     | 128.3  | 130.3 |
| $^{6^{H_5})_2}$ 69.6 68.5 70.4, 73.6 139.1 134.7<br>$^{26^{H_5})_2}$ 69.6 68.5 70.4, 73.6 139.1 134.7<br>$^{28.5}$ - 76.7, 76.9 135.9 134.0<br>$^{71.6}$ 73.3(12), 70.8(3) $^e$ 134.3(21)<br>$^{72.3(12), 73.0(16)}$ $^e$ 134.3(21)<br>$^{77.6(10)}$ - 72.6(4), 74.2(15) 139.8(12) 133.8(21)<br>$^{77.6(10)}$ - 77.2(34), 77.5(29)<br>$^{77.6(10)}$ - 77.2(34), 77.5(29)<br>$^{77.6(10)}$ 137.9(12) 130.7(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [(C <sub>5</sub> H <sub>4</sub> ) Fe(C <sub>5</sub> H <sub>4</sub> )]2                                                                                                  | 30.6                        | 1                                 | 76.1, 77.9                              |                               |           |        |       |
| $\begin{bmatrix} 28.5 & - 76.7, 76.9 & 135.9 & 134.0 \\ & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [(C <sub>5</sub> H <sub>5</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> Ge(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub>                                       | 69.6                        | 68.5                              | 70.4, 73.6                              | 139.1                         | 134.7     | 127.9  | 128.7 |
| $^{H_5}$ $^{C,d}$ $78.8(7)$ $69.4$ $70.1(3), 70.8(3)$ $^{d}$ $72.3(12), 73.0(16)$ $^{d}$ $72.3(12), 73.0(16)$ $177.6(10)$ $ 72.6(4), 74.2(15)$ 139.8(12) $13^{-6,d}$ $18.7(55)$ $ 77.2(34), 77.5(29)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.9(12)$ $137.$                                                                          | (C <sub>5</sub> H <sub>4</sub> ) Fe(C <sub>5</sub> H <sub>4</sub> ) (C <sub>5</sub> H <sub>4</sub> )                                                                    | 28.5                        | 1                                 | 76.7, 76.9                              | 135,9                         | 134.0     | 128.6  | 129.8 |
| 77.6(10) - $72.6(4)$ , $74.2(15)$ 139.8(12)<br>$^{c,d}$ $18.7(55)$ - $77.2(34)$ , $77.5(29)$ $137.9(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ge(С <sub>6</sub> H <sub>5</sub> )2<br>[(С <sub>5</sub> H <sub>5</sub> )Fe(С <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> PС <sub>6</sub> H <sub>5</sub> <sup>С, d</sup> | 78.8(7)                     | 69,4                              | 70.1(3), 70.8(3)<br>72.3(12), 73.0(16)  | ٥                             | 134.3(21) | I      | I     |
| c,d 18.7(55) - 77.2(34), 77.5(29) 137.9(12) 77.6(7), 77.7(21) 137.9(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [C <sub>5</sub> H4P(C <sub>6</sub> H <sub>5</sub> )2] <sub>2</sub> Fe <sup>C,d</sup>                                                                                    | 77.6(10)                    | 1                                 | 72,6(4), 74.2(15)                       | 139.8(12)                     | 133.8(21) | 1      | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                         | 18.7(55)                    | l                                 | 77.2(34), 77.5(29)<br>77.6(7), 77.7(21) | 137.9(12)                     | 130.7(14) | ł      | I     |

<sup>a</sup> In CDCl<sub>3</sub> solution unless otherwise stated. <sup>b</sup> ppm downfield from TMS. <sup>c</sup> C<sub>6</sub>D<sub>6</sub> solution. The C meta and C para signals were obscured. <sup>d</sup> The figures in brackets are coupling constants,  $J(^{31}P-1^{3}C)$  (Hz). <sup>e</sup> Not observed.

351


### TABLE 5


<sup>13</sup>C NMR SIGNALS AND ASSOCIATED <sup>1</sup>H NMR SIGNALS IN SOME FERROCENE DERIVATIVES

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>13</sup> C Resonance [ <sup>1</sup> H F | tesonance] (ppm)  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------|--|
| [(C <sub>5</sub> H <sub>5</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> Si(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71.1 [4.39],                                 | 74.8 [4.28]       |  |
| C <sub>5</sub> H <sub>4</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 76.7 [4,16],                                 | 77.8 [4.53]       |  |
| $\begin{bmatrix} \left[ (C_5H_4) Fe(C_5H_4) \right]_2 \\ Si Si$ | 75.1 [4.50],                                 | 77.9 [4.65]       |  |
| [(C <sub>5</sub> H <sub>5</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> Ge(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.4 [4.22],                                 | 73.6 [3.84]       |  |
| Ge(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.7 [4,24],                                 | 76.9 [4.48]       |  |
| [C <sub>5</sub> H <sub>4</sub> P(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> ] <sub>2</sub> Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72.6 [4.11],                                 | 74.2 [4.01]       |  |
| PC <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.2 [4.53], 77.5 [4.<br>77.7 [4.18]         | 18], 77.6 [4.29], |  |

Fig. 3.

UV-VISIBLE SPECTRA OF FERROCENE AND SOME
[1] FERROCENOPHANES





#### TABLE 6

ELECTRONIC SPECTRAL DATA FOR SILICON, GERMANIUM AND PHOSPHORUS SUBSTITUTED FERROCENES  $^{\alpha}$ 

|                                                                                                                                                | λ <sub>max</sub> (nm) | $\epsilon$ (m <sup>2</sup> mol <sup>-1</sup> ) |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------|--|
| (C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub> Fe                                                                                               | 440                   | 9.0                                            |  |
| [(C <sub>5</sub> H <sub>5</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> PC <sub>6</sub> H <sub>5</sub>                               | 442                   | 29.5 <sup>b</sup>                              |  |
| [C <sub>5</sub> H <sub>4</sub> P(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> ] <sub>2</sub> Fe                                                | 442                   | 20.7                                           |  |
| (С <sub>5</sub> H <sub>4</sub> )Fe(С <sub>5</sub> H <sub>4</sub> ) —<br>РС <sub>6</sub> H <sub>5</sub> —                                       | 501                   | 43.0                                           |  |
| [(C <sub>5</sub> H <sub>5</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> S <sub>1</sub> (C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> | 452                   | 24.3 <sup>b</sup>                              |  |
| [C <sub>5</sub> H <sub>4</sub> Sı(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ] <sub>2</sub> Fe                                               | 447                   | 16.7                                           |  |
| C <sub>5</sub> H <sub>4</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )                                                                              | <del>4</del> 83       | 27.0                                           |  |
| [(C <sub>5</sub> H <sub>4</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub>                                                              | 483                   | 54.0 <sup>b</sup>                              |  |
| [(C <sub>5</sub> H <sub>5</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> Ge(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub>              | 451                   | 23.5 <sup>b</sup>                              |  |
| Ge(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub>                                                                                                | 486                   | 23.0                                           |  |

<sup>a</sup> In cyclohexane solution. <sup>b</sup> N.B. These compounds contain two ferrocene units per molecule and therefore for comparison purposes  $\epsilon$  should be halved.

derivatives, some containing several bridges [11]. These authors found a linear relationship between the changes in quadrupole splitting and isomer shift (relative to ferrocene) and the mean iron—ring distance. They suggested that this distance is the significant factor rather than the angle of tilt of the rings. In the form of ring tilt observed in the present work, changes in iron—ring distance are relatively small (from 166 pm in ferrocene to 163—165 pm in I, III and IV) and yet the change in quadrupole splitting reported here is much larger than would be expected from the linear relationship observed by Hillman and Nagy for such a small change in the iron—ring distance.

An alternative possibility is that the distortion at the C(1) carbon atoms leads to changes in the metal—ring bonding. Such changes might cause withdrawal of electrons from the iron  $d_{xy}$  orbital and a reduction of the quadrupole splitting. The fall in quadrupole splitting when ferrocene is oxidised to the ferrocinium ion is interpreted in this way [12]. Now that the molecular

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Т (К) | $\Delta Eq \ (\mathrm{mm \ s^{-1}})$ | δ (mm s <sup>-1</sup> ) <sup>a</sup> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|--------------------------------------|
| (C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub> Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77    | 2.42                                 | 0.53                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~295  | 2.37                                 | 0.44                                 |
| [(C <sub>5</sub> H <sub>5</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> Si(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77    | 2.29                                 | 0.53                                 |
| [C <sub>5</sub> H <sub>4</sub> Si(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ] <sub>2</sub> Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77    | 2.32                                 | 0.55                                 |
| (C <sub>5</sub> H <sub>4</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                      |                                      |
| $ = \frac{(C_5H_4)Fe(C_5H_4)}{Si(C_6H_5)_2} = \frac{C_5H_4}{Si(C_6H_5)_2} = \frac{C_5H_5}{Si(C_6H_5)_2} = \frac$ | 77    | 1.97                                 | 0.51                                 |
| $\begin{bmatrix} - \left[ (C_5 H_4) Fe(C_5 H_4) \right]_2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                      |                                      |
| Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77    | 2.01                                 | 0.51                                 |
| [(C <sub>5</sub> H <sub>5</sub> )Fe(C <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> PC <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                      |                                      |
| [·····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~295  | 2.85                                 | 0.44                                 |
| C5H4P(C6H5)2 Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77    | 2.37                                 | 0.53                                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~295  | 2.31                                 | 0.43                                 |
| (C <sub>5</sub> H <sub>4</sub> )Fe (C <sub>5</sub> H <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77    | 1.97                                 | 0.52                                 |
| PC6H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~295  | 1.96                                 | 0.43                                 |
| [(۲ <sub>5</sub> H <sub>5</sub> )Fe(۲ <sub>5</sub> H <sub>4</sub> )] <sub>2</sub> Ge(۲ <sub>6</sub> H <sub>5</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77    | 2.30                                 | 0.52                                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~295  | 2.29                                 | 0.44                                 |
| — (C <sub>5</sub> H <sub>4</sub> )Fe(C <sub>5</sub> H <sub>4</sub> ) —<br>— Ge(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                      |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77    | 2.02                                 | 0.51                                 |
| └─── Ge(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> ──┘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~295  | 2.01                                 | 0.43                                 |

# MOSSBAUER PARAMETERS FOR [1]FERROCENOPHANES AND RELATED NON-BRIDGED COMPOUNDS

<sup>a</sup> Relative to iron metal.

structures of I, III and IV are known [5], it would be useful to perform some molecular orbital calculations on these molecules to try to rationalise these values.

In conclusion, it can be seen that the [1]ferrocenophanes are unusual and interesting compounds whose spectroscopic properties do not fit the patterns established for other ring-tilted ferrocenophanes. Further work is in progress to extend the range of [1]ferrocenophanes, to investigate their solution chemistry and to prepare this type of compound with other metallocene systems.

### Experimental

<sup>1</sup>H NMR spectra were recorded at 100 MHz using a JEOL MH 100 spectrometer. <sup>13</sup>C and <sup>31</sup>P NMR spectra were recorded at 25 MHz and 40.5 MHz respectively using a JEOL PS/PFT100 spectrometer. Electronic spectra were recorded on a Pye-Unicam SP1800 spectrophotometer. Mass spectra were recorded on a Hitachi-Perkin-Elmer RMU 6 instrument. <sup>57</sup>Fe Mössbauer spectra

TABLE 7

were recorded on a conventional constant-acceleration Mössbauer spectrometer [13], using a 25 mCi <sup>57</sup>Co(Pd) source supplied by the Radiochemical Centre, Amersham, England, using iron metal as a standard. Analyses were obtained from the Exeter University departmental service or from Butterworth Laboratories, Teddington, Middlesex. All solvents were dried and degassed before use and all reactions were carried out under nitrogen. N,N,N',N'-tetramethylethylenediamine (TMED) was fractionally distilled and the fraction boiling between 121.5–122.5°C was used.

1,1<sup>'</sup>-dilithioferrocene-bis(N,N,N',N'-tetramethylethylenediamine) was prepared according to a published procedure [14] with the modification that a much longer reaction time ( $\approx$ 18 hours) was found to give improved yields. Non-bridged ferrocene derivatives were prepared by literature methods [15,16].

### Preparation of 1,1'-ferrocenediyldiphenylsilane (I)

TMED (15.05 cm<sup>3</sup>; 100 mmol) and n-butyllithium (100 mmol) were added to a stirred solution of ferrocene (7.44 g; 40 mmol) in n-hexane (400 cm<sup>3</sup>). After 18 hours the stirred mixture was cooled to  $-78^{\circ}$ C and a solution of dichlorodiphenylsilane (6.2 cm<sup>3</sup>; 30 mmol) in n-hexane (100 cm<sup>3</sup>) was added. The mixture was left to warm to room temperature then heated under reflux for 1 hour. The cooled mixture was stirred for 30 minutes with water (5 cm<sup>3</sup>), then filtered through a glass sinter (porosity 2). The red filtrate was washed several times with water, dried over MgSO<sub>4</sub>, filtered and the volume of solution reduced to approximately 10 cm<sup>3</sup> under reduced pressure. The precipitated product was filtered off, washed with cold n-hexane and dried in vacuo. The yield was 3.02 g. A further crop of pure product was obtained from the filtrate by chromatographing it on neutral alumina (1% H<sub>2</sub>O) using benzene as eluent. Total yield of pure product was 3.49 g (32%). Molar mass (osmometrically in benzene) 372; calculated 366.

### Preparation of bis-(1,1'-ferrocenediyl)silane (II)

A sample of 1,1'-dilithioferrocene-bis(N,N,N',N'-tetramethylethylenediamine), prepared as above from ferrocene (1.86 g; 10 mmol) was washed with n-hexane (25 cm<sup>3</sup>) and then suspended in n-hexane (50 cm<sup>3</sup>). The suspension was cooled to  $-78^{\circ}$ C and tetrachlorosilane (4.0 mmol) as a 0.65 M solution in n-hexane was added with stirring. The mixture was allowed to warm to room temperature then heated under reflux for  $1\frac{1}{2}$  hours. The cooled mixture was stirred for 30 minutes with 0.1 M potassium hydroxide solution (75 cm<sup>3</sup>) and then filtered to give a red solid which was washed with water and n-hexane and dried at 50°C in vacuo. Soxhlet extraction of the red solid with n-hexane, evaporation to dryness and recrystallisation from benzene gave 264 mg (17%) of the pure product. Molar mass (osmometrically in benzene) 403, calculated 396.

### Preparation of 1,1'-ferrocenediyldiphenylgermane (III)

The preparation was carried out as described for the preparation of I, using the following amounts of reactants; TMED (3.76 cm<sup>3</sup>; 22.3 mmol), n-butyllithium (22.4 mmol), ferrocene (1.68 g; 9.0 mmol) and dichlorodiphenylgermane (1.82 g; 6.1 mmol). The total yield of III was 485 mg (19%).

### Preparation of 1,1'-ferrocenediylphenylphosphine (IV)

A sample of 1,1'-dilithioferrocene-bis(N,N,N',N'-tetramethylethylenediamine) prepared as above from ferrocene (1.86 g; 10 mmol) was washed with n-hexane and then suspended in n-hexane (50  $\text{cm}^3$ ). The stirred suspension was cooled to  $-78^{\circ}$ C and a solution of *P*,*P*-dichlorophenylphosphine (1.2 g; 6.6 mmol) in n-hexane (60  $\text{cm}^3$ ) was added. The mixture was allowed to warm to room temperature and then stirred for a further 20 hours. Water  $(50 \text{ cm}^3)$ was added and the mixture stirred for 30 minutes before being filtered. The burgundy coloured filtrate was washed several times with water, dried over MgSO<sub>4</sub>, filtered and the volume reduced to about 40 cm<sup>3</sup> when dark redpurple crystals began to form. The solution was left to crystallise overnight at  $-18^{\circ}$  C. The product obtained in this way contained a small amount of a powdery brown material as an impurity, which was easily removed by washing the product in n-hexane. Alternatively the phosphine could be purified by chromatography on Grade II alumina under a nitrogen atmosphere, using benzene as solvent. The yield of IV, as a moderately air-sensitive solid, was 994 mg (51%).

### Preparation of cis-dichlorobis(1,1'-ferrocenediylphenylphosphine)platinum(II)

A solution of IV (200 mg; 0.69 mmol) in benzene (50 cm<sup>3</sup>) was added to a stirred solution of dichloro(*cis,cis*,1,5-cyclooctadiene)platinum(II) (100 mg; 0.27 mmol) in benzene (100 cm<sup>3</sup>). The mixture was left to stand at 5°C for 18 hours during which time the product crystallized as small dark-red needles. The solid was filtered off and dried in vacuo, the yield was 185 mg (79%). (Found: C, 46.3; H, 3.5; Cl, 7.6; P, 6.7.  $C_{32}H_{26}Cl_2FeP_2Pt \cdot 0.3-C_6H_6$  calcd.: C, 46.5; H, 3.2; Cl, 8.1; P, 7.1%). The compound decomposes above 160°C without melting.

# Preparation of poly(1,1'-ferrocenediyldimethyltin)

A sample of 1,1'-dilithioferrocene-bis(N,N,N',N'-tetramethylethylenediamine) was prepared as above from ferrocene (1.03 g; 5.5 mmol) and was suspended in tetrahydrofuran ( $40 \text{ cm}^3$ ). The stirred suspension was cooled to  $-78^{\circ}$ C and a solution of dichlorodimethyltin (0.79 g; 3.6 mmol) in tetrahydrofuran (30 cm<sup>3</sup>) was added. The mixture was allowed to warm to room temperature and then stirred for further 26 hours, after which the volume of the solution was reduced to  $15 \text{ cm}^3$  and toluene (60 cm<sup>3</sup>) was added. The mixture was filtered, the volume of the solution reduced to  $15 \text{ cm}^3$  and n-hexane  $(80 \text{ cm}^3)$  was added. This caused an orange viscous oil to precipitate, which was washed with n-hexane and dried (60°C; 0.4 mmHg). The yield of crude product was 651 mg (35%). A sample for analysis was purified by column chromatography to given an orange resinous material (Found: C, 44.1; H, 4.3; Molar mass (osmometrically in chloroform) approximately 4600; <sup>1</sup>H NMR, CH<sub>3</sub>,  $\delta = 0.44$  ppm (s, 3);  $C_5H_4$ ,  $\delta = 4.07$  (t, 2) and 4.29 ppm (t, 2);  $C_5H_5$ ,  $\delta = 4.13$  ppm (s, 0.4)). These results are consistent with the formulation  $C_{10}H_{9}Fe(C_{10}H_{8}FeSn (CH_3)_2$ , H,  $x \approx 13$ ; for x = 13 calcd.: C, 44.2; H, 4.3% Molar Mass = 4508.

A similar reaction with  $(C_6H_5)_2SnCl_2$  also gave a polymeric product which was not completely characterised.

### Acknowledgments

R.H. Whiteley thanks the Science Research Council for a maintenance grant.

### References

- 1 A.G. Osborne and R.H. Whiteley, J. Organometal. Chem., 101 (1975) C27.
- 2 H. Stoeckli-Evans, A.G. Osborne and R.H. Whiteley, Helv. Chim. Acta, 59 (1976) 2402.
- 3 A.G. Osborne, R.H. Whiteley and R.E. Hollands, IXth International Conference on Organometallic Chemistry, Dijon, Sept. 3-7, 1979, P14T.
- 4 J.D. Dunitz, L.E. Orgel and A. Rich, Acta Cryst., 9 (1956) 373.
- 5 H. Stoeckli-Evans, A.G. Osborne and R.H. Whiteley, J. Organometal. Chem., in press.
- 6 K.L. Rinehart, A.K. Frerichs, P.A. Kittle, L.F. Westmann, C.H. Gustafson, R.L. Pruett, and J.E. McMahon, J. Amer. Chem. Soc., 82 (1960) 4111.
- 7 K.L. Rinehart, D.E. Bublitz and C.H. Gustafson, J. Amer. Chem. Soc., 85 (1963) 970.
- 8 T.H. Barr and W.E. Watts, Tetrahedron, 24 (1968) 6111.
- 9 B.E. Mann, C. Masters, B.L. Shaw, R.M. Slade and R.E. Stainbank, Inorg. Nuclear Chem. Letters, 7 (1971) 881.
- 10 T.H. Barr and W.E. Watts, J. Organometal Chem., 15 (1968) 177.
- 11 M. Hillman and A.G. Nagy, IXth International Conference on Organometallic Chemistry, Dijon, Sept. 3-7, 1979, P11F.
- 12 R.L. Collins, J. Chem. Phys., 42 (1965) 1072.
- 13 P.E. Clark, A.W. Nichol and J.S. Carlow, J. Scientific Instruments, 44 (1967) 1001.
- 14 M.D. Rausch and D.J. Ciappenelli, J. Organometal. Chem., 10 (1967) 127.
- 15 H. Rosenberg, U.S. Patent, 3426053 (1969).
- 16 J.C. Kotz and C.L. Nivert, J. Organometal. Chem., 52 (1973) 387.